Classification and assessment tools for structural motif discovery algorithms
نویسندگان
چکیده
منابع مشابه
Structural alphabet motif discovery and a structural motif database
This study proposes a general framework for structural motif discovery. The framework is based on a modular design in which the system components can be modified or replaced independently to increase its applicability to various studies. It is a two-stage approach that first converts protein 3D structures into structural alphabet sequences, and then applies a sequence motif-finding tool to thes...
متن کاملMEME Suite: tools for motif discovery and searching
The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms--MAST, FIMO and GLAM2SCAN--allow scannin...
متن کاملdiagnostic and developmental potentials of dynamic assessment for writing skill
این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...
15 صفحه اولAlgorithms and statistical methods for exact motif discovery
The motif discovery problem consists of uncovering exceptional patterns (called motifs) in sets of sequences. It arises in molecular biology when searching for yet unknown functional sites in DNA sequences. In this thesis, we develop a motif discovery algorithm that (1) is exact, that means it returns a motif with optimal score, (2) can use the statistical significance with respect to complex b...
متن کاملA tree-based approach for motif discovery and sequence classification
MOTIVATION Pattern discovery algorithms are widely used for the analysis of DNA and protein sequences. Most algorithms have been designed to find overrepresented motifs in sparse datasets of long sequences, and ignore most positional information. We introduce an algorithm optimized to exploit spatial information in sparse-but-populous datasets. RESULTS Our algorithm Tree-based Weighted-Positi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2013
ISSN: 1471-2105
DOI: 10.1186/1471-2105-14-s9-s4